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The problem of whether a stream of microscopic particles may be concentrated into 
a focal point by entrainment within a carrier gas is considered for dilute particles 
linearly coupled to the velocity field of an incompressible gas. Typically, the 
dynamical behaviour of the particles is governed by a so-called Stokes number S, the 
product of their relaxation time and a characteristic value of the velocity gradient 
in the suspending fluid. An inequality due to Robinson (1956) is used to illustrate the 
natural tendency of potential flows to concentrate the particles. For geometries with 
planar or axial symmetry, with errors cubic in their initial distance to the axis, the 
trajectories of identical particles originating near an axis of symmetry are shown to 
cross it a t  a common focal point provided they have some initial convergence and 
their Stokes number is larger than a critical value 9*. The position of the focal point 
of supercritical particles depends on their Stokes number, tending to infinity as X 
approaches S*. Particle trajectories originating far from the axis of symmetry are 
seen to cross the centreline at defocused positions, in analogy with the optical 
geometric aberration effect. The focusing phenomenon is illustrated numerically for 
two-dimensional potential flows through nozzles of several geometries and also 
analysed in the proximity of the axis of symmetry. For these examples, the threshold 
value S* of the Stokes number for focusing is of order one, over an order of 
magnitude larger than typical values of the familiar critical Stokes number marking 
the onset of particle impaction on solid surfaces. The focal width may be made over 
two orders of magnitude smaller than the nozzle diameter by restricting the region 
where particles are seeded to a moderate angle away from the axis. This angle may 
be higher than 2. for the case of a jet exiting through a slit in an infinitely thin plate. 
There is also some discussion of the use of high-resolution focusing instruments. 

1. Introduction 
Under conditions when their Brownian movement may be neglected, the motion 

of small spherical aerosol particles suspended in a carrier gas may be described 
through Newton’s equation 

where up is the particle velocity, u is the velocity field of the suspending gas, and the 
force coupling the two has been taken to be linear in the slip velocity up - u through 
the proportionality constant 7, the particle relaxation time (Friedlander 1977). g is 
an external acceleration which we shall assume to depend only on position x, and to 
be irrotational. The particle trajectories may thus be determined straightforwardly 
once r ,  g and u(x,t) are specified, together with appropriate injection (initial) 
conditions for up. 
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FIGURE 1. Sketch of the aerodynamic focusing scheme. An aerosol suspension is accelerated 
through a converging nozzle in such a fashion that the particles cross the axis of symmetry at  a 
focal position located a t  z = zc0. 

The problem that interests us here is that of concentrating a stream of particles as 
sharply as possible into nearly a focal point, as schematically shown in figure 1. We 
shall consider injection conditions such that up = u+gr  in an ‘equilibrium’ region 
upstream a t  infinity, where the derivatives of u +gr  are negligible. Subsequently gr 
will be absorbed into u without loss of generality, while u is taken as known. The 
parameter r in (1)  will be treated as a constant and made dimensionless with a 
characteristic value U of the velocity u ( x ,  t )  and a characteristic length L introduced 
by the geometry of the problem: S = rU/L. 
This group, often called the Stokes number, measures the degree to which U, and u 
are uncoupled. 

Our problem is then to determine under what conditions (if any) of the function 
u(x ,  t )  and the Stokes number S an initially uniform distribution of particles can be 
best made to converge into a focus. The situation differs from that of focusing ions 
in an electromagnetic field in the dissipative term -up/? appearing in (1). Also, the 
driving force is now the velocity field U ( X ,  t )  of the carrier gas. For these reasons, we 
stress the facts that the focusing process is aerodynamic, and the particles are neutral. 
The particles may be arbitrarily small, even down to the molecular level, provided 
their behaviour is approximately deterministic as implied by (1 ), where Brownian 
effects are ignored. 

Given the practical importance of the brother fields of geometric optics ; electron 
microscopy ; mass spectrometry ; visible, ultraviolet, X-ray or electron-beam 
lithography ; and so many other areas depending fundamentally on the possibility of 
bringing photons, ions or electrons into a focus, one can hardly doubt that a 
systematic investigation on the subject of aerodynamic focusing can be a most 
rewarding task. From the practical point of view, the perspective of focusing neutral 
particles adds, to the advantages of traditional ion focusing, the absence of 
electrostatic repulsion among the particles, so that much denser beams may be 
contemplated. 

Several experimental observations on aerosol focusing have been reported 
previously. In  their pioneering work on high-speed beams of small particles, Israel & 
Friedlander (1967) noticed that, under some fluid-dynamic conditions, the aerosol 
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beam entrained in a highly supersonic free jet expanding through a converging nozzle 
into a low-pressure region was, far from the nozzle, confined to a rather small solid 
angle (2 x sr). Their explanation for this behaviour involved the interplay 
between the tendency of particles, owing to inertia, to continue their converging 
flight towards the jet centreline upon exiting a convergent nozzle, counteracted by 
the tendency of the suspending gas to make their trajectories diverge in the 
supersonic part of the expansion (figure 1). Most subsequent research on particle 
focusing has followed this early observation, relying on supersonic jets expanding 
into highly evacuated regions. An important extension of this early work is due to 
Israel & Whang (1971), while the most complete characterization available on 
focusing phenomena in seeded supersonic jets of aerosols is due to Dahneke and his 
colleagues (Dahneke & Cheng 1979; Dahneke & Hoover 1982; Dahneke, Hoover & 
Cheng 1982). On the analogous problem where the aerosol particles are substituted 
by heavy molecules, the limited information available (Fernindez de la Mora 
1985a, b )  indicates a behaviour similar to that typical of aerosol beams. Nonetheless, 
no prior experiment has concentrated the seed species into an area significantly 
smaller than the exit area of the accelerating nozzle. 

Subsonic jets of aerosol suspensions have been studied extensively numerically and 
experimentally (Marple & Willeke 1979; Friedlander 1977), mainly in relation to 
aerosol-segregating instruments called impactors, where a gas-particle mixture is 
accelerated through a nozzle and impacted perpendicularly against a flat surface. 
Particles with a Stokes number larger than a critical value are captured a t  the 
surface, while those smaller remain in suspension. To our knowledge, there has been 
no observation of any focusing effect in such devices; however, the range of the 
parameter S typical of the operation of aerosol impactors is characteristically 
constrained to the region around 0.1, the critical value beyond which the particles 
start impacting on the surface. Furthermore, the exit region of the nozzles used most 
often in these instruments is not converging but cylindrical, a circumstance likely to 
reduce any focusing tendency. 

The present paper will examine some of the most salient features emerging from 
an initial analysis of high-resolution aerodynamical focusing. Because the slow 
progress of this subject can be traced back in part to  the considerable difficulties 
involved in computing accurately the key transonic part of a supersonic expansion 
(the only flow in which some degree of focusing has been observed thus far), we shall 
consider incompressible flows principally. Their simplicity will allow the extraction 
of a number of general conclusions with minor analytical effort. We address basic 
questions such as whether it is possible to find a velocity field u ( x ,  t )  able to focus an 
aerosol suspension ; whether it is preferable to use potential or rotational flows, etc. 
In  particular, we shall find previously unexplored conditions under which a very 
sharp focus may be attained. Our leading conclusions are summarized in the 
abstract. 

The structure of the paper is the following. First we follow the early work of 
Robinson (1956) and write an equation for the divergence of the velocity field of the 
particle phase. The source term is seen to  be strictly negative for flows where the 
symmetrical part of the velocity-gradient tensor dominates over the antisymmetrical 
(i.e. in potential flows), and positive otherwise. From there it is concluded that 
rotational flows disfavour focusing. An important inequality (Robinson 1956) 
establishing that, in potential flows with vanishing initial particle velocity 
divergence, the particle density always increases along streamlines is illustrated in a 
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variety of examples. From there i t  follows that focusing is a quite natural 
phenomenon rather than a pathology of particle dynamics. Flows constrained by a 
condition of axial symmetry are considered in $3. A most general finding pertinent 
to this case arises from an analysis near the axis of symmetry reported in $ 3.1. The 
corresponding governing equations are characterized by moving singularities 
identifiable as focal points, where all trajectories originating in the vicinity of the 
axis meet. Section 3.2 discusses the special case of linear flows, for which an 
analytical solution is possible. An infinitely narrow focus may be attained for this 
problem, for which only particles characterized by a Stokes number larger than a 
critical value S* are able to cross the axis and be focused. Off axis, particle 
trajectories do defocus slightly (in analogy with the so-called geometric optical 
aberration), in a process that we describe in §$4 and 5 .  Section 4 explores numerically 
a limited number of examples of two-dimensional potential flows through nozzles, 
yielding quantitative predictions on focal distances, critical Stokes numbers and 
geometric aberration effects as functions of nozzle geometry. A more detailed study 
of the focal region based on a reduced near-axis form of the governing equations is 
given in $5 .  Section 6 discusses some practical aspects of the design of analytical 
instruments based on aerodynamic focusing. Finally, conclusions are drawn in $ 7  on 
some of the findings and the many limitations of this work. 

J .  Ferndndez de la Mora  and P.  Riesco-C‘hueca 

2. Particle piling up: potential versus rotational flows 
Whenever their Brownian movement may be neglected, the motion of aerosols in 

a known fluid flow is governed by Newton’s deterministic equation (1). The question 
is whether the trajectories starting in an upstream region of equilibrium at  various 
spatial locations may be concentrated to the point of crossing each other further 
downstream a t  a focus. From similar problems in geometric optics and acoustics it 
is known that trajectories do often cross each other, being wrapped by singular 
surfaces called ‘caustics ’ that  separate the illuminated from the dark field. That 
such caustics do also exist in aerosol flows is obvious from considering two 
perpendicularly opposing jets, one of them being seeded with particles but not the 
other, The particles from the seeded jet may have enough inertia to penetrate into 
the originally clean stream, but they are eventually pushed backwards by the 
opposing flow a t  a turning point. The envelope of these trajectories is commonly 
called a caustic, which we shall encounter again in $4. The divergence of the particle 
velocity field, like their density, goes to  infinity at a caustic, where some sort of a 
partial ‘focusing ’ is achieved. 

Subsonic focusing is made possiblc in principle because the particle phase is not 
incompressible. It can be compressed by the motion acording to the mass 
conservation equation 

D lnp P == - V . u  
Dt P’  

because there is no constraint imposing that V up vanishes. The well-known subsonic 
feature ensuring incompressibility of gases results from the fact that the molecular 
motion is fast compared with thc mean convective speed, so that the random 
molecular agitation can readily fill any region of local low density. But particles have 
a negligible Brownian motion. They are thus highly supersonic with respect to their 
own thermal speed, and accordingly highly compressible (Ferntindez de la Mora 
1982). It is also posible to  predict the direction in which pp changes by considering 
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the sign of V-up,  thanks to a most notable and neglected study by Robinson (1956). 
Rewriting the Eulerian form of (1) for the particles, 

taking its divergence and realizing that V . u  = 0, results in 

where 

DV-U, V * U  
Dt 7 

+- = -1, (4) 

and summation with respect to repeated subindices is implicit. Robinson (1956) 
extended Kelvin’s circulation theorem to the up field, so that if wp = V x up vanishes 
far upstream and V x u  = 0 throughout the flow field, then wp also vanishes 
everywhere. Indeed, the velocity wp of the particles obeys the equation 

Dm v x u - w p  
-+ap v .up -up. vu, = 9 Dt 7 

implying that, when wp = 0 initially, it can only grow driven by the vorticity V x u 
of the carrier fluid. Because 1 is always positive for the case of irrotational flows, (4) 
may be integrated to prove that V - u p  is always negative or null if i t  vanishes far 
upstream. Robinson’s (1956) inequality follows 

% > O ,  Dt 

and there is a tendency for particles to pile up as they move along streamlines. The 
extension of Robinson’s analysis to rotational flows is straightforward. By decom- 
posing the velocity-gradient tensor au,,/axj into its symmetrical and anti- 
symmetrical parts e and 0, respectively, 1 may be written as 

(6) 

Accordingly, the contribution of wp to 1 is strictly negative, tending to  decrease the 
rate of growth ofp, along streamlines, opposing the process of streamline convergence 
and thus delaying or cancelling focusing effects. Therefore, because the only external 
source for wp is V X U ,  one can immediately say that focusing will be favoured 
whenever V x u = 0 and disfavoured (though not necessarily stopped) otherwise. It 
is tempting to attribute these defocusing effects to the centrifugal forces associated 
with local vorticity. However, because centrifugal forces can arise in irrotational as 
well as rotational flows (see figure 2 ) ,  it  is clear that they can lead to  either focusing 
or defocusing. 

Equation (5) is a powerful statement. It is a sort of second law saying that the final 
equilibrium state of an aerosol moving in a potential flow approaches the focused 
state of infinitely concentrated particles. And this concentrating tendency has 
nothing to do with coagulation or interparticle attraction ; it is a purely dynamical 
result of the motion inside the carrier fluid. Obviously, since the overall particle mass 
is conserved, the fact that pp increases along particle streamlines is compensated by 
the creation of vacuum or dust-free regions where no particle trajectory reaches. 
Such a particle tendency to pile up in some regions and to evacuate others completely 

1 = (e+Q) : (e -O)  = e:e-0:S2 = e:e-+w,.w,. 
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FIGURE 2. Qualitative sketch of particle streamlines in a potential flow around a cylinder for a 
value of the Stokes number near the critical one for impaction onset. The only particle trajectory 
intercepting the cylinder is the stagnation line, which is tangent to it. This particle streamline 
‘separates’ from the cylinder, leaving a ‘wake’ where no particles may reach. The creation of this 
‘vacuum ’ is compensated by an increase in concentration along particle streamlines according to 
Robinson’s inequality (5). Notice the significant piling up of particles near the limit trajectory. 

is illustrated in figure 2 for the well-known problem of potential flow about a circular 
cylinder of radius R moving a t  speed Urn in an otherwise undisturbed fluid (Batchelor 
1977). Under the condition shown, when rU,/R = $, the cylinder has concentrated 
a large amount of dust close to  the ‘vacuum interface’. It thus appears that focusing 
is a most natural feature of potential flows. 

It is interesting to note that the phenomenon of particle impaction also tends to 
be favoured in irrotational flows, a t  least for the case of linear flows where the fluid 
velocity-gradient tensor is spatially uniform (Fernandez de la Mora 1985a, b ) .  

3. On the existence of focal-point singularities 
Designing a focusing nozzle is a typical example of the inverse problem often 

facing the aerodynamicist. Given the nozzle shape one can determine the flow field 
and the particle trajectories. But, what is the nozzle shape, if any, that  will bring an 
aerosol stream into a focus? I n  the present section we prove that focal-point 
singularities may actually exist for some flow fields, first through a near-axis analysis 
in situations with planar or axial symmetry, and then by considering an exactly 
solvable problem. 

3.1. Eulerian analysis near an axis of symmetry 
An axially symmetric geometry will provide a stringent constraint on the motion of 
the particles, thus strongly enhancing their natural tendency to concentrate. 
Accordingly, although non-symmetric geometries might be of interest, we shall now 
consider two- or three-dimensional nozzles with planar or axial symmetry. In  order 
to be focused, the particles must obviously cross the axis where any existing focal 
point is constrained to lay. It is, thus, most natural to attempt a local description in 
the proximity of the axis, in analogy with the so-called paraxial or Gaussian limit of 
geometric optics. Under such conditions, one may prove very generally the possible 
existence of focal points. 

Let u, v, up and vp be the fluid and particle velocities parallel and perpendicular to 
the axis of symmetry, and let x and y be the coordinates parallel and perpendicular 
to the axis. We consider two-dimensional as well as axisymmetric flow fields. I n  the 
proximity of the axis ( y  = 0) ,  with errors of order y2 for u and of order y3 for v, we 
may write 

u = u ( x ) ,  ( 7 )  
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where, under steady-state conditions, the functions u(x) and P(x) are related through 

du 
dx 

the mass conservation equation 
(n+l )P+-  = 0, 

in which n is unity for axisymmetric and zero for two-dimensional flows. The 
particles are originally in equilibrium with the fluid (up = u far upstream), so that the 
injection conditions are compatible with a solution of the form 

up = up(x), (9) 

vp = Y P p ( 4 .  (10) 

7upu;+up-u = 0, (11) 

7(~pp; ,+P3+Pp-P = 0, (12) 

Hence the steady-state particle momentum conservation equations (3) become the 
ordinary differential equations 

where primes denote differentiation with respect to x. The first of these expressions 
is uncoupled from the second, and merely determines the particle velocity along the 
axis. For all reasonably conceived nozzle shapes, up will be a smooth function of x, 
certainly free from zeros or singularities. The information of greatest interest is 
contained in the equation for Pp, whose quadratic term is capable of producing 
singularities where /Ip diverges. These are called moving singularities because the 
coe6cients of the ordinary differential equation are not themselves singular, and 
because the point xo a t  which PP diverges (or not) depends on the boundary 
conditions and other parameters of the problem such as 7. That (12) does indeed 
admit an explosive behaviour may be shown by realizing that, close to the 
hypothetical singularity, the term PP -P can be neglected compared with Pi, leading 
to the following solution : 

dx 

Clearly, Pp can diverge as l/(x-xo) a t  particular points xo whose exact location must 
be determined numerically, and which depend on 7 and the specific form of u(x) (that 
is, on particle size and fluid flow field). A singularity of pp must be interpreted as a 
focal point, because the particle trajectories are given by the separable equation 

with solution 

where A is a constant taking a different value for each particle trajectory. From the 
exponential form of (15) y cannot possibly vanish (crossing the axis) for a finite value 
of x unless Pp diverges (remember that up has no zeros). But if PP diverges a t  a 
particular point xo,y vanishes independently of the value of A and thus 
independently of the particular streamline considered. Therefore, we make the 
remarkable inference that, if one particle trajectory crosses the axis, all trajectories 
near the centreline also cross through exactly the same focal point. And the present 
result has very broad generality, because no assumption on the fluid flow is made 
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exccpt for that of symmetry. The same conclusions would hold for rot,ational and 
viscous flows (of course, the vorticity vanishes a t  the axis), and also if a more 
complicated nonlinear expression were to be used for the drag law coupling the 
particles to the gas in (1). The extension of these results to  compressible flows is also 
straightforward and only requires to take into account the variation of T with 
pressure and temperature. 

The above theoretical conclusion on the existence of foci will be confirmed 
numerically in $4 (and analytically in $3.2 for a rather special situation) with the 
additional observation that particles below a critical size, characterized by a value 
of the Stokes number of order unity, S* = O ( l ) ,  never cross the centreline, while 
supercritical particles converge a t  an axial focal point whose position depends on 
S(T) ,  tending to infinity as S tends to X*. 

3.2. The case of linear flows 
The case of flows in which u ( x )  is linear with the position vector x is particularly 
interesting, because, when written in Lagrangian form in terms of x and its 
derivatives, (1) becomes a set of exactly solvable linear ordinary differential equations 
with constant coefficients. This situation is a special limit of (9) and (lo),  except that 
their validity is not now restricted to small values of y and that /3 is now a constant, 
--Po. Accordingly, if the initial particle velocity up is linear with y a t  an injection 
surface x = constant, where up is independent of y, then all particle trajectories will 
cross the axis a t  exactly the same location, independently of their initial proximity 
to i t :  there is no geometrical aberration for this class of flows. Furthermore, the 
underdamped-overdamped transition associated with the equation of motion in the 
y-direction 

occurs when the group (the Stokes number S for this problem) takes the value 
+, corresponding to the threshold condition when particles start crossing the axis and 
thus become focused. This behaviour is exactly analogous to that of particles 
approaching the stagnation point in front of an obstacle in an inviscid fluid 
(Friedlander 1977). In that case, supercritical particles start impacting on the 
obstacle, while in the present one they start crossing the axis of symmetry. Hence, 
the phenomenon of particle focusing is also characterized by a critical value S* of the 
Stokes number. 

4. Focal parameters and geometric aberration in two-dimensional potential 
flows 

Several features of the focusing phenomenon seen above may be illustrated and a 
few new ones identified after examination of the particle flow field in some examples. 
Those described below are chosen from among the relatively restricted family of 
potential flows in two-dimensional problems. The triple assumption (incom- 
pressibility, irrotationality and two-dimensionality) is not satisfied in most physical 
situations, but the qualitative conclusions of our analysis may be extended to more 
general flows. In  the absence of an analytical specification of the gas velocity field a 
numerical description becomes necessary. 

Let (x,y) again bc the coordinates along and perpendicular to the axis. The 
complex potential is defined as o = $+i+,  where $ is the velocity potential and y i  
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the stream function. The geometry is specified by the lines of constant $ after 
supplying a relation between w and x = x+iy (hence the velocity is v = (dw/dx)* 
where the superscript * denotes the complex conjugate). 

In  the first example, the flow through a hyperbolic two-dimensional nozzle is 
considered and approximately modelled through the relation (Milne-Thomson 1938) 
x = sinh w or V* = (2 + l)- i ,  with streamlines y2/sin2 $-x2/cos2 $ = 1.  Lengths have 
been normalized using the distance 2L0 between the two branch-point singularities 
a t  x = & i where (v/ tends to infinity. Velocities are made dimensionless by means of 
the centrepoint speed U,. In  order to confine the particles to the near-axis region 
where a sharp focus may be expected ($3.1) ,  the nozzle region is bounded by two 
symmetrical streamlines & $o (in our numerical example k0 = 0.3746 rad). Each 
trajectory is characterized by the value of $ on the fluid streamline from which it 
originates in the region far upstream. 

In the units just defined, (1) becomes 

where up is the unknown particle velocity and u is the carrier-gas velocity field. S = 
dJo/Lo is taken to be 4 in this example, roughly equal to twice the critical value S* 
below which there is no centreline crossing. The resulting trajectories are shown in 
figure 3, with a sharp focal region located around x = 1.61. One can see, upon closer 
examination of the numerical results, that  the particles are concentrated in a region 
some 100 times smaller than the throat diameter. As predicted in $3.1, such a clean- 
cut focus is a consequence of the relatively small values used for $,. But the situation 
deteriorates progressively for trajectories originating a t  larger angles away from the 
axis because, whenever fi is not small, a phenomenon analogous to the optical 
geometric aberration effect may shift significantly the point of axial crossing. 

For small values of $, the particle trajectories cross the axis a t  a position 
indistinguishable from the singular points of (11) and (12). The axial coordinates of 
these singular points are shown in figure 4 as a function of the Stokes-number 
parameter S. Notice again the existence of a critical value S* at which the focus tends 
to infinity and below which no focusing occurs. 

A more realistic complex potential model can be used to describe the outflow from 
a symmetrical nozzle with straight walls (figure 1 )  : an open-ended two-dimensional 
internal wedge with half-angle a (Milne-Thomson 1938 ; Batchelor 1977). The 
relation between the final jet width 2b and the orifice width 2d is called the 
contraction ratio p = b / d .  An explicit relation x us. ~3 is not available for an arbitrary 
value of a ,  but the physical and potential planes are mapped through a differential 
equation 

dxldw = exp (-+xu) +{ 1 +exp ( -  

The normalization velocity and length are chosen to be the final jet velocity U and 
half-width b (see figure 1 ) .  Equation (17) is complemented with the boundary 
condition 

z = xo = ip for w = wo = i. 

An Euler integration scheme of (17) along a suitable path in the complex plane x 

linking x0 to the destination point provides a direct relation w(x).  By itself, (17) gives 
a direct representation of the velocity field u in terms of the complex potential w. It 
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FIGURE 3. Sketch of the particle trajectories inside a hyperbolic nozzle with an asymptotic 
semiangle of convergence of 22'. The Stokes number is 4 in the units of (16). 

o i  . I . . I . I . , . 
2 3 4 5 6 I 8 
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FIQURE 4. Focal distance z,,/L, as a function of particle Stokes number for two-dimensional 
potential flow through a hyperbolic nozzle. 

is therefore convenient to carry out the integration of Newton's equation (16) in the 
complex potential plane, using ( ~ ,  ~) as alternative coordinates rather than (x ,  y) : 

and then relating w and x through the above-mentioned Euler integration. This 
model supplies an excess of information which needs to be simplified by synthetizing 
the main featurs of the focal region into a few representative parameters. The 
centreline-crossing point x, depends in general on the location where the particle 
trajectory originates. That is, x, is a function of the initial stream function @o at  the 
streamline where the particles are seeded. The shape of the dependence x ~ ~ ( $ ~ ) ,  
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FIGURE 5 .  Crossing point xco/Lo as a function of seeding stream function $o for S = 8 (O), 2.25 
(+) and 2.05 (A), in the flat-plate-orifice nozzle (a = in)  outlet flow. 

whose nature will be further investigated in the next section, is displayed in figure 5 
for the case of an orifice in a flat plate ( a  = 90) and different values of the Stokes 
number, defined for this example as S = U r / b .  Two important features characterize 
each curve x,(@.,). One is the curvature at the origin A = {d2x,/d@~)+, which 
measures the amount of geometric aberration; the other is xco, the virtual focus 
location in the absence of aberration. xco = x,(O). A double pattern can clearly be 
noticed in the figure: as S decreases, xco increases. Eventually a threshold value of 
S (the critical Stokes number 8") will be reached where xc0 + 00,  below which only 
particle trajectories originating far from the axis might eventually cross the 
centreline. As the critical Stokes number is approached, the sharpness of the focus 
decreases and A grows indefinitely. 

The virtual-focus location xco is plotted in figure 6 as a function of S for different 
values of a ,  as a criterion for comparing different nozzle shapes. It is clear from the 
figure that all the curves have a vertical asymptote corresponding to the critical 
Stokes number, as well as a horizontal asymptote resulting from the limit of infinite 
inertia (when S % I ,  the streamlines are radial, centred at a point located at a 
distance xc0 = d/tana from the nozzle outlet). It can also be observed that the 
critical Stokes number grows considerably with decreasing a. 

Figure 7 gives additional insight into the problem by showing the profile of 
different streamlines (all of them originating in the positive $J at the focal region for 
the case a = in. The trajectories, which differ in slope and crossing point depending 
on the value of @o x Oinitial/a, determine an envelope (boundary of the dust-free 
rcgion, or caustic) where the particle density peaks singularly before dropping to zero 
in the outside dust-free layer. As pointed out earlier, caustics are a common feature 
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FIGURE 6. Crossing point xco/L, for initial stream function tending to zero as a function of the 
Stokes number S = U r / b  for different wedge half-angle a in the two-dimensional conical nozzle 
flow: a = 4 8  (A), n/6 (HI, n/4 (A), 3n/10 (H), n/3 (+), 2n/5 (El), n/2 (H), 3 4 5  (U), 2n/3 (+). 
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Y 

0.5 1 .o 1.5 2.0 2.5 
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FIGURE 7 .  Particle streamlines originating from the upper half-plane in the two-dimensional 
conical nozzle flow (a = $t,S = 4). Also represented is the envelope calculated asymptotically. 
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FIGURE 8. Focal region for the same case as in figure 7 showing caustic, emerging trajectories 
(with $,, = 0.4, 0.6, 0.8, 0.9 and 1 respectively) and particle jet throat. 

0 0.2 0.4 0.6 0.8 1 .O 

FIGURE 9. Particle jet contraction rate /3, as a function of the seeding angle a’ in a two- 
dimensional conical nozzle flow (a  = i7c) for different Stokes numbers: S = 2.05 (m), 2.25 (+) 
and 4 (m). 

U’ 
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of systems where the evolution of a field is given by solving ordinary differential 
equations along characteristic lines, and they represent a sort of partial condensation 
of a three-dimensional space into a surface. When the caustic merges with the axis, 
a stringent symmetry condition condenses further the singular surface into a line, the 
axis itself. Foci may thus arise as the points of tangency between caustics and the 
axis of symmetry. 

The picture is complicated by the presence of streamlines originating with negative 
$o which. after crossing the centreline a t  a given point x , ( $ ~ )  will emerge in the other 
half-plane and cross the caustic line. The first negative -y%o trajectory to  cross the 
caustic determines the minimum radius containing all the particles or particle jet 
throat whose location (x t ,  yt) depends on the upstream injection conditions. Consider 
for instance the case where particles are seeded in a range of angles from a' to -a', 
i.e. < $o,lm = a'/a. It is clear from figure 8 that the throat precedes the virtual 
focus or apex of the caustic. Maximal densities are to be expected a t  the virtual focus 
while the maximum contraction rate of the full particle jet takes place a t  the throat 
(p, = y, /d) .  B s  a' decreases, Pp decreases. Focusing can thus be seen to be favoured 
by large nozzle angles a and moderate seeding angles a'. Figure 9 shows that even 
whcn a = a'. in the case of a flat plate with an orifice ( a  = in), the contraction rate 
stays below 10% for a variety of Stokes numbers. 

If a plate were inserted normally to the flow, the shape of the expected deposits 
that one would see could be inferred from the particle streamline profiles shown in 
figure 7 .  For x < xt all the deposit would be confined within the sharply marked 
boundary corresponding to the caustic. Between X ,  and xc0 the caustic is encircled 
by a fainter halo produced by emergent particles after crossing the centreline. For 
x > xco. there is no caustic and the deposit becomes gradually fainter away from 
the centre. 

5. Near-axis description of the focal region 
In 9 3. a preliminary Eulerian analysis supplied a straightforward illustration of 

the existence and location of moving singularities identified as foci. This procedure 
is limited in that it is not easy to refine beyond lowest order and therefore is not 
informative about geometric aberration. These higher-order phenomena are treated 
in this section by a near-axis Lagrangian analysis. 

5.1. *Vear-uxis expansion for  problems with a complex potential o 
In two-dimensional problems with planar symmetry, assuming the existence of a 
complcx potential, it is possible to carry out a systematic expansion to yield an 
asymptotic description of the focal region. Let $o < 1 be the seeding stream function 
far upstream for the trajectory under consideration. Taking into account the 
symmetry. the position and velocity of the particles can be expressed in powers of 
t = $ o .  

# = $0 + + . . ., $ = €(yo + €2y1 + . . .), 
u = U"+€2U,+ ...) 11 = e(w0+e2v,+ ...), 

while similar expansions can be used to express the carrier-gas velocity u :  
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Hence, after using (18) and (19), one obtains the following set of equations: 

4; = uou10, 4; = ~ l ~ z o + v o v z o + ~ o ~ z l ~  (22) 

Y;, = ‘ u o ~ ~ o - ~ o ~ z o ~  Y; = ~ 1 ~ z 0 + ~ 0 ~ z 1 - ~ 0 ~ 1 1 - ~ 1 ~ 1 0 ,  (23) 

where d/dt is symbolized by a prime. The above is a system of ordinary differential 
equations for the unknown velocity and location of the particles. The location of the 
virtual focus will be given by the value of $o a t  the point where yo = 0, $co = {$o}r,=o. 
The dependence of the crossing point as a function of E can be expressed as the 
expansion 

where $cl is a measure of the geometric aberration and can be shown to be 

$,(4 = $ , 0 + E 2 A ? , + . . . >  

where the right-hand side is evaluated a t  $co. Hence 

x, = xc0 + E 2 X C 1  + . . . , (25) 

where xCi = $,i(dx/d$) (also evaluated a t  qic0) ; for instance, in the case of a flat-plate 
n o z z l e ( a = $ n ) , f o r i = 1 , 2 ,  ... : 

xCi = $Jexp ( + [ I  +exp ( - ~ ~ , ~ ) l ~ > ~ + ” .  
Equation (25)  is compared to the result from a direct integration of (18) and (19) 

in figure 5. The good agreement observed indicates that (20)-(23) provide a simple 
means to determine the amount of geometric aberration. Additionally, these 
equations contain some information about the local description of streamlines a t  the 
focus, where they can be approximated as straight lines: 

y = (x-x,) tan6, 

where both the slope tan 6 and the crossing point x, depend on the value of the initial 
stream function $o. Accordingly 

tan 6 = E(m,, + ~~m~~ + . . .), 
where m,, = v,o/u,o and m,, = m,o(v,l/v,O-ucl/u,o) (the c-subindex indicates that 
the v i  and ui are evaluated a t  $co). Thus 

(26) 

The family of curves f (x ,c )  gives rise to an envelope (caustic) obtained from the 
intersection of y- f (x, E )  = 0 with af/& = 0: 

( 2 7 )  

Equation (27) is plotted in figure 7 ,  where it is seen to compare rather well with the 
actual envelope in the vicinity of the axis. One interesting result from (27 )  is that the 
initial slope of the caustic a t  the focus xc0 is null since ye - Ix-xCOlf. The throat can 

y = ~{m,~(x-x,~)+~~[m,,(x-x,,)-m,,x,,]+ ... } =f(x,c) .  

Y e  = f 4m,o(x-~co) i h c o  i(x-xco) [m,, x,1 -m,1(~-~,0)1P+ o ( x - x , , ) 2 .  
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FIGURE 10. Geometric-aberration parameter zC1 (A) and crossing-angle factors -mc0 (+) and 
m,, ( 0 )  for the case of a flat-plate-orifice nozzle (a = 90) as a function of the Stokes number S. 

be located as the intersection of (27) with f ( x ,  $.,i,). The root of the corresponding 
system of nonlinear equations can be determined by Newton's method. 

The parameters xco (virtual-focus location), xcl (geometric aberration) and m,,, 
me, (streamline slope a t  crossing point) are therefore sufficient to give a good 
description of the focal region. Figure 10 gives the xcl ,  m,, and mCl profiles for the 
case of a flat-plate-orifice nozzle (a = 90) as a function of the Stokes number S. 

In conclusion, the near-axis analysis yields a very simple access to the essential 
parameters describing the focal region. 

5.2.  General near-axis expansion for axisymmetric or two-dimensional problems 
Let us characterize a particle trajectory by means of the value of the fluid stream 

function 4 a t  which particles are seeded in the fluid upstream a t  infinity. $ is rescaled 
in such a way that it becomes unity on the boundary of the nozzle and vanishes on 
the centreline, so that $ 4 1 in the vicinity of the axis. We further define E = $'In, 
where n = 1 for two-dimensional and 2 for axisymmetric problems. Accordingly, the 
particle streamline is 

y = y(t, e ) ,  x = x ( 4  €1, (28) 

which may be expanded in powers of E as 

y = €yo(t)  + e3yl(t) + . . ., 
x = x,(t)+s2x1(t)+ ... . 

(29) 

(30) 
Analogous1 y up = uo(t)+e2u1(t)+ ..., 

up = €",(t) + E 3 W l ( t )  + . . . . 
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In order to expand Newton's equation ( 1 )  for the particles in powers of E we first 
expand the fluid velocity field in powers of y and then in powers of E by means of (29) 
and (30) : 

u ( x ,  y) = UO(X) + y2U1(x) + . . . (33) 

(34) 

= Uo(xo+e2x,+ ...)+ "2(yo+E2y1+ ...) 2U1(XO+€~X1+ ...)+ ... 

= UOC.0) + E 2 { X 1  Uh(X0) + Y i  Ul(XO)> + O(E"> 

where the definitions of U,, Ul etc., are implicit in (17), and primes denote derivatives 
with respect to xo. Analogously 

(35) 

(36) 

v ( x ,  y) = yVo(x)  + y3V1(x) + . . . 
= ~VO(Z0) Y o  + E 2 h  VO(X0) +YO x1 K ( X 0 )  +YE Vl(.,)> + O(e4). 

We now write Newton's equations for the particles in Lagrangian coordinates, using 
primes for the time derivatives acting on lower-case variables (but still denoting 
derivatives with respect to xo by primes acting on Vi and Ui), 

Tu/+U-U(x, y) = 0, T d + W -  V ( x ,  y )  = 0, (37) 

x' = up, y' = up. (38) 

7U;+Uo-uo(Xo(t)) = 0, (39) 

7v;+v0- Vo(xo(t))  = 0, (40) 

(41) 

(42) 

x; = uo; ...) x:, = u,, (43) 

y; = vo;  ..., y:, = 21,. (44) 

Expanding in powers of E by means of (29)-(32), (34) and (36) one obtains a t  the two 
leading orders : 

4 +%-b , ( t )  G ( x o ( t ) )  + y M  U1(xo(t))> = 0, 

T'u; + ?I1 -{yl Vo + yo x1 v; + y; V,} = 0, 

The initial conditions for the case when particles are injected upstream a t  infinity 
in an equilibrium region where the gradients of u(x ,  t )  vanish are that up = u and that 
the particle trajectories coincide with a fluid streamline: the kinematics and the 
dynamics of both phases are identical. Knowing the fluid velocity field u(x, y ) ,  w(x, y),  
by means of the relations dt = d x / u  = dy/v, one may obtain expressions 

y = Y(t ,  4 ,  x = x( t ,  4 (45) 

which may be expanded exactly as (29) and (30) for the particles providing explicit 
expressions for the xi,  y i .  These may be used as initial conditions to start the 
integration of (43) and (44). The initial conditions for the ui and w, result from 
ignoring the primed terms multiplied by T in their corresponding dynamical 
equations (39)-(42). 

6. Some practical considerations on particle focusing instruments 

The present paper has examined some of the most salient features emerging from 
an initial analysis on the subject of high-resolution aerodynamical focusing. Because 
such a singular phenomenon might be the basis for new instruments capable of 
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concentrating and size-separating particles, some discussion on their potential and 
limitations will be worthwhile. 

6.1. On the smallest particle size that can be focused 

In  order to be focused, a particle must have a Stokes number larger than a critical 
value S*, which depends on the geometry and the fluid-dynamical conditions. For a 
given particle size, S may be increased by increasing the flow velocity and by 
decreasing the gas pressure and the nozzle diameter. The upper limit for the velocity 
in a converging nozzle is the speed of sound, while the pressure and nozzle diameter 
can only be reduced a t  the expense of decreasing the nozzle Reynolds number. 
Because of the negative effects of the vorticity generated within the viscous regions 
near the nozzle walls, i t  is unlikely that Reynolds numbers much below a few 
hundreds might yield good focusing results. Accordingly, there is a definitive limit to 
the smallest particle size that can be focused. To extend that range one would have 
to design transonic nozzles with the smallest possible value of S* and capable of 
performing adequately within a range of moderate Reynolds numbers. The challenge- 
to the aerodynamicist is thus very considerable. But the analytical advantages of 
focusing sharply ultrafine particles and macromolecules might well deserve the 
effort. A look a t  figure 6 indicates that a very substantial reduction in S* may be 
achieved by using wide angles of convergence. A similar phenomenon arises in highly 
supersonic axisymmetric jets, for which, after increasing the half-angle of a conical 
nozzle from 15" to go", we have recently measured a value of S* nearly an order of 
magnitude smaller than that found by Dahneke el al. (1982). This substantial 
improvement makes i t  possible to  focus molecules with molecular masses of several 
hundred atomic units seeded in He or H,, a situation that we are currently exploring 
experimentally. 

6.2. On the limits to the focal sharpness attainable 
Geometric aberration is a limitation that can in principle be overcome by appropriate 
aerodynamic design. Even in the unlikely event that the aerodynamical analogue of 
a broad field lens were to be unattainable, geometric aberration phenomena could be 
eliminated by simply seeding the particles only in the region near the axis. This 
procedure was successfully followed by Dahneke et al. (1982) and has the additional 
advantage of eliminating possible defocusing effects originating in the viscous regions 
near the nozzle walls. 

Perhaps a more serious problem would result from the singularity of the 
phenomenon itself, by virtue of which the particle concentration diverges a t  the focal 
point. As a result, one might be obliged to consider particle-particle collisions and 
coagulation phenomena in the vicinity of the focus, which might result in a focal- 
region structure with a finite width even for trajectories originating in the 
neighbourhood of the axis. Nonetheless, it is clear that the importance of this 
hypothetical difficulty will decrease with particle dilution. Furthermore, the problem 
is self-alleviated because the main purpose of focusing is concentrating and there 
seems to be no need to concentrate highly a suspension that is not highly dilute to 
start with. 

A most important limiting factor on the focusing sharpness for very fine aerosols 
and heavy molecules is Brownian motion, which inevitably spreads out each particle 
streamline. I n  fact, the above description in terms of deterministic Newtonian 
trajectories parallels rather well classical geometric optics and its equally 
deterministic 'rays'. And, as in its optical diffraction analogue, the inclusion of 
Brownian motion within the picture complicates rather dramatically the theoretical 
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formulation. When the Stokes number is not a small parameter the standard equations 
of diffusion are not applicable, and the problem must be dealt with within a kinetic 
rather than a hydrodynamic framework. A good measure of the defocusing effects of 
Brownian motion is the inverse of a Mach number based on the particle convective 
velocity and its speed of thermal agitation, a quantity too minute to be of any 
concern for high-speed flows except perhaps in the rather interesting region of 
ultrafine particles and macromolecules. 

6.3. On the effect of a collecting surface 
Our computations of $ 4  involved various jets, none of which was intercepted by a 
collecting surface. The free-jet geometry is of interest for analytical instruments 
where various particle sizes are differentially focused along the jet centreline, and 
counted non-intrusively. However, other particle-size spectrometers may be based 
on collecting the focused beam on a surface, or on sampling it through a small centred 
hole for further analysis. I n  that case, the flow field is modified by the collecting 
or Collimating surfaces, as are the particle trajectories. Consequently, our curves 
of focal distance as a function of S would have to incorporate the nozzle-to-plate 
distance L as an additional parameter. The information of greatest practical interest 
would be a curve representing, for every value of L, the corresponding value of the 
Stokes number of the particle whose focal point falls right on the collecting surface 
or on the middle of the collimating hole. In  principle, such a curve could be quite 
different from those shown in figure 6. However, the circumstance that the critical 
Stokes number for focusing is much larger than that required for impact on a surface 
(typically 0.1 or 0.2) implies that a particle large enough to focus in the absence of 
a collecting plate will have more than sufficient inertia to be affected only slightly by 
the presence of the plate. On that basis, it seems reasonable to expect that our 
figure 6 will not be too different from the hypothetical figure mentioned above which 
accounted for the presence of the plate. This rough approximation is even more 
precise in the case of highly supersonic flows, where the loss of stagnation pressure 
in the shock wave ahead of the obstacle and its small separation from the surface 
make the Stokes number for impact considerably larger than that characteristic of 
the nozzle-exit region, the one relevant for focusing (Fernandez de la Mora 1 9 8 5 ~ ) .  

7. Summary of results and limitations of this work 
The limited amount of initial explorations carried out above on the subject of 

aerodynamic focusing seems to indicate that : 
(i) Potential flows lead to the concentration of particles, thus favouring focusing. 

Rotational flows appear to  have the opposite effect. 
(ii) The focus is infinitely sharp in a hypothetical linear flow in which particle 

trajectories may be found analytically and where only particles with a Stokes 
number greater than a manage to cross the axis. 

(iii) The focus is infinitely sharp in symmetrical nozzles for the streamlines near 
the axis of symmetry. 

(iv) There is a ‘geometrical aberration ’ that  defocuses slightly the streamlines 
originating far from the jet centreline. In  spite of it, numerical examples show that 
the width of the focal region may be made over two orders of magnitude smaller than 
the nozzle diameter by restricting the region where particles are seeded to a moderate 
angle away from the axis. This angle may be higher than in for the case of a jet 
exiting through a slit in an infinitely thin plate. 
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(v) Focusing occurs only for particles characterized by a value of the Stokes 
number greater than a critical value S*, which is typically of order unity. 

(vi)  The focus is rather sharp except perhaps near critical conditions, under which 
the focal point tends to infinity and geometric-aberration effects appear to be 
singular. For that reason, high-resolution focusing might be easier to  attain a t  finite 
distances from the source. This observation might explain why previous aerosol- 
beam experiments (where the collecting surface was invariably hundreds of nozzle 
diameters downstream from the source) only achieved a modest degree of focusing. 

(vii) Because the spatial location of the singularity depends on 7, by collecting 
particles a t  varying axial positions one would create a particle mass spectrometer of 
great sensitivity and separation power. 

However. many of these findings are limited by a variety of mechanisms not 
considered in our idealized examples. Important but non-limiting factors are viscous 
phenomena on the nozzle walls, turbulent mixing a t  the boundary of the free jet, the 
effects of a collecting surface placed on the path of the jet, fluid compressibility, the 
nontinearity of the drag law connecting the two phases, etc. Oiffusion appears as a 
most important limiting factor on the focusing sharpness for very fine aerosols and 
hcavy molecules. 

A study of the effects of vorticity and of non-symmetric geometries or initial 
conditions will very likely enrich the limited range of situations analysed here, as 
hinted in a most interesting work on the motion of particles and bubbles in a two- 
dimensional cellular flow which has appeared while this manuscript was being 
reviewed for publication (Maxey 1987). This paper finds a broad range of conditions 
where all the trajectories of both the particles and the bubbles merge asymptotically 
into a few special accumulation planes. In addition to providing another rather 
striking example of the tendency of particles to concentrate singularly in some 
privileged regions, Maxey ’s work is interesting in that i t  illustrates the phenomenon 
for a strongly rotational flow field as well as finding accumulation surfaces which do 
not always (but sometimes) coincide with planes of symmetry of the fluid flow. 
Maxey covers conditions in some ways broader than those considered here ; but he 
explores only one moderately small value of the Stokes number a t  which no foci arise. 
Sonetheless, because his accumulation curves are most likely dependent on 8, they 
suggest another promising approach for designing analytical instruments capable of 
discriminating between different particle sizes while simultaneously concentrating 
each of them. 

This paper is dedicated to the memory of K.  T. Whitby. We are indebted to Dogan 
Gunes (Istanbul) to R. Fernandez-Feria, D. E. Rosner, S. Cohen and S. Fuerstenau 
(Yale) for useful discussions. This research has been supported by the National 
Science Foundation, Grant CBT-8612143 and the U.S. Department of Energy Grant 
DE-FG02- 87ER 13 750. 
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